INTERNATIONAL ECONOMICS

Lecture 9 — January 10, 2023

Julian Hinz Bielefeld University

Last week: Heckscher-Ohlin Model of Trade

- Trade because of differences in factor endowments and intensities
 - → comparative advantage!
- Distributional consequences within countries
- No perfect specialization

This week

- Export decisions of heterogeneous firms
- Factor allocation in the open economy
- Marginal trade liberalization and factor reallocation

NAICS industry	Percent of all firms	Percent of firms that export	Percent of firms that import	that import & export
311 Food Manufacturing	7	17	10	7
312 Beverage and Tobacco Product	1	28	19	13
313 Textile Mills	1	47	31	24
314 Textile Product Mills	2	19	13	9
315 Apparel Manufacturing	6	16	15	9
316 Leather and Allied Product	0	43	43	30
321 Wood Product Manufacturing	5	15	5	3
322 Paper Manufacturing	1	42	18	15
323 Printing and Related Support	13	10	3	2
324 Petroleum and Coal Products	0	32	17	14
325 Chemical Manufacturing	3	56	30	26
326 Plastics and Rubber Products	5	42	20	16
327 Nonmetallic Mineral Product	4	16	11	7
331 Primary Metal Manufacturing	1	51	23	21
332 Fabricated Metal Product	20	21	8	6
333 Machinery Manufacturing	9	47	22	19
334 Computer and Electronic Product	4	65	40	37
335 Electrical Equipment, Appliance	2	58	35	30
336 Transportation Equipment	3	40	22	18
337 Furniture and Related Product	6	13	8	5
339 Miscellaneous Manufacturing	7	31	19	15
Aggregate manufacturing	100	27	14	11

Percent of firms

Linked-Longitudinal Firm Trade Transaction Database (LFTTD). Notes: The first column of numbers summarizes the distribution of manufacturing firms across three-

digit NAICS industries. Remaining columns report the percent of firms in each industry that export, import, and do both.

model assumptions

- Continuum of firms, differ by productivity φ
- Monopolistic competition, each firm produces one product variant
- International trade between symmetric countries: $Y = Y_d = Y_x$
- Fixed production costs $f_d > 0$, fixed trade costs $f_x > 0$
- variable iceberg trade costs $\tau \geq 1$

Optimization problem in home market

- CES leads to isoelastic demand for each variant

$$q(\varphi) = p(\varphi)^{-\sigma}Y$$
 with normalized price level $P = 1$

– Fixed production costs lead to constant markup on marginal cost $c(\varphi)$

$$\begin{split} \rho(\varphi) &= \frac{\sigma}{\sigma - 1} c(\varphi) \\ &= \frac{1}{\rho} \frac{\textit{w}}{\varphi} \quad \text{with} \quad \rho \equiv \frac{(\sigma - 1)}{\sigma} \in (0, 1) \quad \text{and} \quad c(\varphi) = \frac{\textit{w}}{\varphi} \end{split}$$

Operating profit in home market

Operating profit, i.e. excluding fixed production costs f_d

$$\pi_{d}(\varphi) = p(\varphi)q(\varphi) - c(\varphi)q(\varphi)$$
$$= \frac{1}{\sigma} \left(\frac{1}{\rho} \frac{w}{\varphi}\right)^{1-\sigma} Y$$

Heterogeneous firms

$$p(\varphi) = \frac{1}{\rho} \frac{\mathbf{w}}{\varphi}, \quad q(\varphi) = \left(\frac{1}{\rho} \frac{\mathbf{w}}{\varphi}\right)^{-\sigma} \mathbf{Y} \quad \text{and} \quad \pi_d(\varphi) = \frac{1}{\sigma} \left(\frac{1}{\rho} \frac{\mathbf{w}}{\varphi}\right)^{1-\sigma} \mathbf{Y}$$

Companies differ on the basis of their productivity, e.g. for $\varphi_1 > \varphi_2$

$$\frac{p(\varphi_1)}{p(\varphi_2)} = \left(\frac{\varphi_1}{\varphi_2}\right)^{-1} < 1, \quad \frac{q(\varphi_1)}{q(\varphi_2)} = \left(\frac{\varphi_1}{\varphi_2}\right)^{\sigma} > 1 \quad \text{and} \quad \frac{\pi_d(\varphi_1)}{\pi_d(\varphi_2)} = \left(\frac{\varphi_1}{\varphi_2}\right)^{\sigma-1} > 1$$

Home market

Optimization problem in foreign market

To sell $q_x(\varphi) \tau q_x(\varphi)$ must be produced

$$\begin{aligned} \max_{p_x(\varphi)} \ \overline{\pi}_x(\varphi) &= \pi_x(\varphi) - f_x \\ &= p_x(\varphi)q(\varphi) - \tau c(\varphi)q_x(\varphi) - f_x \\ &= (p_x(\varphi) - \tau c(\varphi)) p_x(\varphi)^{-\sigma} Y - f_x \end{aligned}$$

Prices in foreign market

First order condition

$$\frac{\partial \overline{\pi}_{\mathsf{X}}(\varphi)}{\partial p_{\mathsf{X}}(\varphi)} = (1 - \sigma)p_{\mathsf{X}}(\varphi)^{-\sigma}\mathsf{Y} + \sigma\tau \mathsf{c}(\varphi)p_{\mathsf{X}}(\varphi)^{-\sigma-1}\mathsf{Y} \stackrel{!}{=} 0$$

Prices then

$$\rho_{x}(\varphi) = \frac{\sigma}{\sigma - 1} \tau c(\varphi)$$

$$= \frac{\sigma}{\sigma - 1} \tau \frac{w}{\varphi}$$

$$= \frac{1}{\rho} \tau \frac{w}{\varphi}$$

Operating profits in foreign market

By substituting $p_x(\varphi)$ into $\overline{\pi}_x(\varphi)$ we get

$$\overline{\pi}_{x}(\varphi) = \left(\frac{\sigma}{\sigma - 1} \tau \frac{\mathbf{w}}{\varphi} - \tau \frac{\mathbf{w}}{\varphi}\right) \left(\frac{\sigma}{\sigma - 1} \tau \frac{\mathbf{w}}{\varphi}\right)^{-\sigma} \mathbf{Y} - f_{x}$$

$$= \frac{1}{\sigma} \left(\frac{1}{\rho} \frac{\mathbf{w}}{\varphi}\right) \tau^{1 - \sigma} \mathbf{Y} - f_{x}$$

$$= \tau^{1 - \sigma} \pi_{d}(\varphi) - f_{x}$$

International trade with heterogeneous firms

Operating profits in the home and export markets:

$$\pi_{\mathsf{X}}(\varphi) = \tau^{1-\sigma} \pi_{\mathsf{d}}(\varphi)$$

Critical exporter φ_x implicitly defined by

$$\pi_{d}(\varphi_{x}) + \pi_{x}(\varphi_{x}) - f_{x} = \pi_{d}(\varphi_{x})$$

$$\Leftrightarrow \quad \pi_{x}(\varphi_{x}) = f_{x}$$

Selection into exporting

Productivity distribution

- $-\varphi$ Pareto-distributed
- Interval $\varphi \in [1, \infty)$
- Single parameter k

Share of exporting firms

Share of exporting firms χ :

- probability of productivity above φ_x ,
- given the productivity of the critical entrepreneur φ_d .

$$\chi \equiv \frac{1 - G(\varphi_{x})}{1 - G(\varphi_{d})} = \left(\frac{\varphi_{x}}{\varphi_{d}}\right)^{-k} = \left[\frac{\pi_{x}(\varphi_{x})}{\pi_{d}(\varphi_{d})}\right]^{-\frac{k}{\sigma - 1}} = \left(\frac{1}{\tau}\right)^{k} \in [0, 1]$$

$$\rightarrow \chi = 0 \text{ for } \tau \rightarrow \infty$$

$$\rightarrow \chi = 1$$
 for $\tau = 1$

Labor demand

Due to the constant price premium

$$\begin{split} \pi &= p(\varphi)q(\varphi) - c(\varphi)q(\varphi) \\ &= r(\varphi) - \frac{w}{\varphi}q(\varphi) \\ &= r(\varphi) - wl(\varphi) \quad \text{with} \quad l(\varphi) = \frac{q(\varphi)}{\varphi} \\ \Leftrightarrow wl(\varphi) &= \rho r(\varphi) \cdot (1 - \rho)r(\varphi) \end{split}$$

Labor demand

$$I_{d}(\varphi) = \frac{1}{\varphi} \left(\frac{1}{\rho} \frac{\mathbf{w}}{\varphi} \right)^{-\sigma} \mathbf{Y}$$

$$I_{x}(\varphi) = \frac{1}{\varphi} \left(\tau \frac{1}{\rho} \frac{\mathbf{w}}{\varphi} \right)^{-\sigma} \mathbf{Y}$$

Effect of a reduction in trade costs τ :

- Share of exporting firms increases
- Exporters capture market share in foreign market
- Exporters expand domestic labor demand
- Higher labor demand leads to rising wages
- Higher wages force unproductive firms to exit the market
- New critical firm with productivity φ_d
- \rightarrow trade leads to resource reallocation from low productivity firms to high productivity firms

summary

- Trade leads to resource reallocation from low to high productivity firms
 - \rightarrow Trade gains through intra-industry resource reallocation
- Higher wages and higher average productivity

Next week

- Starting next class: Trade policy