INTERNATIONAL ECONOMICS

Lecture 8 - December 20, 2022
Julian Hinz
Bielefeld University

Last week (and before)

- Ricardo: better technology \rightarrow comparative advantage
- Heckscher Ohlin: factor abundance \rightarrow comparative advantage
...but where's the intra-industry trade?

Today

- measuring trade flows
\rightarrow intra- vs. inter-industry trade
- returns to scale
\rightarrow external vs. internal returns to scale
- imperfect competition
\rightarrow monopoly and monopolistic competition

INTRA-INDUSTRY TRADE

Inter- vs Intra-industry trade

- Inter-industry trade: trade between industries, e.g., exporting computers and importing bananas, mainly between very different countries
- Intra-industry trade: trade within industries, e.g., exports and imports of cars, mainly between similar countries

Measuring Inter- \& Intra-industry trade

Grubel \& Lloyd (1975) indicator: measures inter- vs intra-industry trade

$$
G L_{i}=\frac{X_{i}+M_{i}-\left|X_{i}-M_{i}\right|}{X_{i}+M_{i}}=1-\frac{\left|X_{i}-M_{i}\right|}{X_{i}+M_{i}}
$$

with imports M_{i} and exports X_{i} of good i.

- $G L_{i}=0 \Rightarrow$ One-way trade
- $G L_{i}=1 \Rightarrow$ Two-way trade: Intra-industry trade
\rightarrow results depend on the aggregation level!

Industry classification

Example: NAICS 2007 classification (North American Industry Classification System)

Grubel \& Lloyd in practice

Men/boys shirts Parts of computers

- gains from inter-industry trade: correspond to comparative advantage
- gains from intra-industry trade: economies of scale (lower production costs) and provide to consumers access to more varieties

M_US,Ch: Value of US imports from China
X_US,Ch: Value of US exports to China

Figure: Fontagné et al. 2006

Intra-industry trade

Further decomposition of IIT:

- Horizontal - different varieties of similar products
- Vertical - products of the same category but of different quality

RETURNSTOSCALE

Returns to scale

- Ricardo and HO assume constant returns to scale (CRS)

$$
f(\lambda K, \lambda L)=\lambda f(K, L)
$$

\rightarrow realistic?

- firm or industry might have increasing returns to scale (IRS)
\rightarrow double input gives more than double output
\rightarrow larger firm more efficient

Returns to scale: Market structure

- Ricardo and HO assume perfect competition
\rightarrow all income paid to owners of factors, no monopoly profits
- With IRS, fewer large firms more efficient than many small firms
\rightarrow imperfect competition, monopoly profits!

Increasing returns to scale

Types of increasing returns:

- Internal: production within a firm increases more than proportionally as more input are used
\rightarrow fixed costs for machinery, R\&D,...
- External: production within a firm increases proportionally with inputs, but more than proportionally within industry
\rightarrow Access to specialized equipment or services, Labor pooling, Knowledge spillovers

External returns to scale

Typology of external returns to scale:

- Marshallian specialization externalities (Marshall 1890)
\rightarrow spillovers from industry concentration (e.g., Sillicon Valley)
- Jacobian diversification exernalities (Jacobs 1969)
\rightarrow variety and diversity of activities as motor of knowledge spillovers, cross-industry spillovers

MONOPOLISTIC
 COMPETITION

Monopolistic competition

Paul R. Krugman
Nobel Prize in 2008
Increasing returns, monopolistic competition, and international trade, Journal of International Economics, 1979:
"This paper develops a simple, general equilibrium model of non-comparative advantage trade. Trade is driven by economies of scale, which are internal to firms. (...) Gains from trade will occur even between countries with identical tastes, technology, and factor endowments"

Monopolistic competition - preview

Model features:

- (Internal) returns to scale
\rightarrow fixed costs of production
- Supply side: differentiated varieties
\rightarrow each producer has monopoly over its varieties
- Demand side: love for variety

Refresher IO

- monopoly: one firm
\rightarrow marginal revenue $=$ marginal cost
\rightarrow profits $=$ price - average cost
- perfect competition: many firms
\rightarrow price $=$ marginal cost
\rightarrow profits $=0$
- oligopoly: few firms
\rightarrow "between" monopoly and competitive market

Monopoly pricing

As monopolist I want to maximize profits:

$$
\max \pi=p(q) q-c(q)
$$

First order condition:

$$
\begin{aligned}
\frac{\partial \pi}{\partial q} & =0 \\
\frac{\partial p(q)}{\partial q} q+p(q)-\frac{\partial c(q)}{\partial q} & =0 \\
\frac{\partial p(q)}{\partial q} q+p(q) & =\frac{\partial c(q)}{\partial q}
\end{aligned}
$$

\rightarrow marginal revenue equal to marginal cost

Monopoly pricing: Marginal revenue

Assume linear demand function

$$
\begin{aligned}
q & =a-b \cdot p \\
\Leftrightarrow p & =\frac{a}{b}-\frac{q}{b}
\end{aligned}
$$

Revenue is then

$$
R=p \cdot q=\frac{a}{b} \cdot q-\frac{q^{2}}{b}
$$

Marginal revenue is then

$$
M R=\frac{\partial R}{\partial q}=\frac{a}{b}-2 \frac{q}{b}=p-\frac{q}{b}
$$

Monopoly pricing: Marginal cost

Assume linear cost function

$$
C=F+c \cdot q
$$

where F is fixed cost and c variable (marginal) cost per additional unit of q.
Average cost is then

$$
A C=\frac{C}{q}=\frac{F}{q}+c
$$

and marginal cost is

$$
\frac{\partial C}{\partial q}=c
$$

Monopoly pricing: Average vs. marginal cost

Monopoly pricing

Monopolistic competition

Monopolistic competition:

- imperfectly competitive industry
- each firm produces unique product, behaves like monopolist
- but: all products (imperfect) substitutes
- then: sell more the larger market, the higher competitors' prices
- sell less, the larger the number of competitors, the higher own price

Monopolistic competition

Express a firm's sales as:

$$
q=S\left(\frac{1}{n}-\beta \cdot(p-\bar{p})\right)
$$

where

- S is the total sales of the industry
- n the number of firms in the industry
- β a constant term of responsiveness of firms sales to price
- p price charged by the firm
- \bar{p} average industry price

Monopolistic competition

Assume all firms share identical demand and cost functions. Then in equilibrium

- price equal average industry price: $p=\bar{p}$
- quantity sold: $q=\frac{s}{n}$

Monopolistic competition

Average costs in monopolistic competition:

$$
\begin{aligned}
A C & =\frac{C}{q} \\
& =\frac{F}{q}+c \\
& =F \cdot \frac{n}{S}+c
\end{aligned}
$$

- the more firms, the higher the average cost
\rightarrow individual firm produces less
- the larger total industry sales, the lower average cost
\rightarrow individual firm produces more

Monopolistic competition

Quantity sold by a firm:

$$
\begin{aligned}
q & =S\left(\frac{1}{n}-\beta \cdot(p-\bar{p})\right) \\
& =\frac{S}{n}+S \cdot \beta \cdot \bar{p}-S \cdot \beta \cdot p \\
& =a-b \cdot p
\end{aligned}
$$

where $a=\frac{S}{n}+S \cdot b \cdot \bar{p}$ and $b=S \cdot \beta$
\rightarrow essentially all given parameters for a firm

Monopolistic competition

Then from monopolistic pricing we know that

$$
\begin{aligned}
c & =p-\frac{q}{b} \\
\Leftrightarrow c & =p-\frac{q}{S \cdot \beta} \\
\Leftrightarrow p & =c+\frac{S / n}{S \cdot \beta} \\
\Leftrightarrow p & =c+\frac{1}{n \cdot \beta}
\end{aligned}
$$

- the more firms, the lower the price charged by each firm
- at some number of firms, price equals average cost
\rightarrow price decreases in n, average costs increases in n
- zero profits in equilibrium for n^{*} firms with price p^{*}

Monopolistic competition: Autarky

Monopolistic competition: Trade

When economy opens to trade

- market size increases for firm, S goes up, decrease of average cost

$$
A C=F \cdot \frac{n}{S}+C
$$

- average costs decrease, p decreases, consumers wins
- consumer welfare also improves because of "love of variety"

Monopolistic competition: Trade

W R A P U P

Old vs. New theories

Traditional neoclassical theories (Ricardo \&
Heckscher-Ohline)
Assumptions:

- perfect competition \& constant returns to scale
- countries differ in PPF \Rightarrow trade based on differences
- homogenous goods

Outcomes:

- inter-industry trade between countries with different endowments/technologies (North-South trade)
- no intra-industry trade

New trade theories (Krugman and following):

Assumptions:

- increasing returns to scale (from fixed cost) \Rightarrow imperfect competition
- differentiated products
- love for variety

Outcomes:

- intra-industry trade between similar countries
- pro-competitive effects
- rationalization effect

Next week

- Next class: Firms
- Read: Chapter on Monopolistic Competition and Firms
- Questions? Schedule office hour meeting or e-mail me

