INTERNATIONAL ECONOMICS

Lecture 6 — December 6, 2022

Julian Hinz Bielefeld University

Last week

- Gains from trade

This week

- Ricardian model of trade
 - $\rightarrow \,$ Differences in productivity

EVALUATION

R E V E A L E D C O M P A R A T I V E A D V A N T A G E

Revealed Comparative Advantage

Balassa (1965) index of **Revealed Comparative Advantage**

- "Revealed": based on trade flows
- Specialization index, assuming that countries specialize in production of goods for which they have comparative advantage :

$$RCA_{i,s} = \frac{X_{i,s}/X_i}{X_{R,s}/X_R}$$

- $X_{i,s}$ exports of country *i* in sector *s*
- X_i total exports of *i*
- R reference region (e.g., OECD, EU, RoW...)
- \rightarrow *i* has CA in *s* iff *RCA* > 1

RCA: United States

Figure: RCA of USA, Source: CEPII, Panorama 2013

RCA: China

Figure: RCA of China, Source: CEPII, Panorama 2013

RCA: Saudi Arabia

Figure: RCA of Saudi Arabia, Source: CEPII, Panorama 2013

RICARDO

Ricardo: Setup

- **2 countries**: home *H* and foreign *F*
- **2 goods**: *X* and *Y*
- 1 factor of production: labor
 - ightarrow perfectly mobile across sectors
 - $\rightarrow \text{ immobile across countries}$

Ricardo: Setup

- Countries differ in technologies of production
- Identical endowments across countries
- Constant returns to scale (CRS)
- Identical preferences across countries
- No distortions, no trade barriers

Production

- Labor unit requirement ("technical coefficient"):

$$a_X = \frac{L_X}{X}$$
 $a_Y = \frac{L_Y}{Y}$

- $\rightarrow\,$ quantity of labor needed to produce one unit of output
- Production of each good:

$$X = \frac{L_X}{a_X}$$
$$Y = \frac{L_Y}{a_Y}$$

Production

- Labor unit requirement inverse measure of labor productivity
 - ightarrow the lower the labor unit requirement the more efficient the production
- Example:
 - $\frac{1}{a_x} = 5$ quantity of cheese produced by a worker per hour
 - $\frac{1}{a_{\rm Y}} = 10$ quantity of wine produced by a worker per hour

Labor Market Equilibrium

- Perfect mobility: Same wage w across sectors
- Full employment condition:

$$L = L_X + L_Y = a_X X + a_Y Y$$

- Production possibility frontier (PPF) of the economy then:

$$X=\frac{L}{a_X}-\frac{a_Y}{a_X}Y$$

 \rightarrow maximum amount of a goods that an economy can produce given endowments

Production Possibility Frontier

Production Possibility Frontier

Slope equal to Marginal Rate of Technical Substitution (MRTS)

$$MRTS \equiv -\frac{\partial Y}{\partial X} = \frac{a_X}{a_Y} = -\text{slope of PPF}$$

 \rightarrow Opportunity cost!

Production Possibility Frontier

Perfect competition, so that

$$\pi_{x} = p_{X}X - wL_{X} = 0$$

$$\leftrightarrow \quad p_{x} = w\frac{L_{X}}{X}$$

$$\leftrightarrow \quad w = \frac{p_{X}}{a_{X}} \quad \text{and accordingly}$$

$$w = \frac{p_{Y}}{a_{Y}}$$

Demand side: Well-behaved utilty function

AUTARKY

Equilibrium under autarky

- Production must equal consumption in autarky
 - \rightarrow MRTS = MRS
 - $\rightarrow\,$ Equilibrium is where PPF is tangent to "best" indifference curve
- Slope of PPF reflects **comparative advantage** and relative price in autarky
- Distance from the origin reflects **absolute advantage**

Equilibrium under autarky

Full specialization

Gains from trade

Triangle of Exchange

Prices under free trade

- for P^{*} ≠ Pⁱ, i ∈ H, F, trade can increase both production and welfare
 → P^{*} > Pⁱ: country specializes completely in the production of X
 - $\rightarrow P^* < P^i$: country specializes completely in the production of Y

Foreign country

Home and Foreign

Home and Foreign

Comparing now two countries, home *H* and foreign *F*. Assume

$$\left(\frac{a_{X}}{a_{Y}}\right)^{H} > \left(\frac{a_{X}}{a_{Y}}\right)^{F}$$
$$\Leftrightarrow \quad \left(\frac{p_{X}}{p_{Y}}\right)^{H} > \left(\frac{p_{X}}{p_{Y}}\right)^{F}$$
$$\Leftrightarrow \quad P^{H} > P^{F}$$

- *H* has a *comparative advantage* in the production of *Y*

 \rightarrow *H* is likely to produce and export *Y*

Free trade prices

Relative price in free trade is determined by relative supply and relative demand

- Preferences are the same in the two countries
- Relative demand curves are the same as well
- Different autarky prices
- Free trade price then

$$P^{F} \leq P^{*} \leq P^{H}$$

 \rightarrow If $P^F = P^*$, F doesn't fully specialize (analogous for H)

Relative demand and supply: Big country

- If foreign country bigger than home: P^* closer to P^F
- If $P^* = P^F < P^H$
 - \rightarrow *H* and *F* trade, but...
 - \rightarrow *F* doesn't specialize, produces both
 - \rightarrow H specializes in Y
- price convergence: each country specializes in good with lower labor unit requirement

Wage effects

- In autarky, real wage equal to labor productivity:

$$p_X = wa_X$$
 or $\frac{w}{p_X} = \frac{1}{a_X}$

- After opening to trade, relative price equation:

$$P^F < P^* < P^H$$

 $rac{a_X^F}{a_Y^F} < rac{p_X^*}{p_Y^*} < rac{a_X^H}{a_Y^H}$

Wage effects

- If F specialized in X and H in Y

$$p_X^* = w^F a_X^F$$
 and $p_Y^* = w^H a_Y^H$

- Relative wages then

$$\frac{w^F}{w^H} = \frac{a_Y^H}{a_X^F} \frac{p_Y^F}{p_Y^F}$$

 \rightarrow rel. wages = rel. productivity \cdot rel. prices of exports (Terms of Trade)

Productivity and wages

- Do relative wages reflect relative productivities of the two countries?
- Evidence shows that low wages are associated with low productivity

 $\rightarrow\,$ Wage of most countries relative to the U.S. similar to productivity relative to the U.S.

Productivity and wages

Source: International Monetary Fund and The Conference Board

Productivity and wages

- Other evidence shows that wages rise as productivity rises
- As recently as 1975, wages in South Korea were only 5% of those of the United States
- Then South Korea's labor productivity rose (to about half of the U.S. level by 2007), so did wages

Wage effects

- After openness: the wage ratio depends on
 - Productivity for the exported good relative to the imported good
 - World price of the exporting good relative to the imported good
- In other words, a country can get richer if
 - Labor productivity in the exporting sector increases
 - Price of the exported good increases

Conclusion

- Trade because of relative productivity differences
 - \rightarrow comparative advantage!
- Trade increases world output and welfare
- No one loses: worst outcome is no gain
- Smaller countries gain more

Next week

- Heckscher-Ohlin model of trade
 - $\rightarrow \,$ Differences in endowments