INTERNATIONAL ECONOMICS

Lecture 5 - November 29, 2022

Julian Hinz
Bielefeld University

Last week

- Tom Friedman: "The World is Flat" Leamer (2009): It's not.
\rightarrow Distance puzzle: Why is the distance elasticity of trade not decreasing?
\rightarrow Border puzzle: Why do countries trade so much more with themselves?

This week

- Gains from trade

EVALUATION

GAINS FROM TRADE

Armington model with two countries

Assumptions

- National product differentiation ("Armington assumption")
- Linear production technologies
- Two countries i, j : Domestic and rest of the world

Armington model with two countries

CES utility function

$$
U_{j}=\left(\alpha_{i}^{\frac{1-\sigma}{\sigma}} c_{i j}^{\frac{\sigma-1}{\sigma}}+\alpha_{j}^{\frac{1-\sigma}{\sigma}} c_{j j}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} \quad \text { with } \quad \sigma>1,
$$

and country-specific demand parameters $\alpha_{i}, \alpha_{j}>0$.

Optimal expenditure

Maximize utility subject to a budget constraint

$$
\max _{c_{i j}, c_{j}} \quad U_{j}=\left(\alpha_{i}^{\frac{1-\sigma}{\sigma}} c_{i j}^{\frac{\sigma-1}{\sigma}}+\alpha_{j}^{\frac{1-\sigma}{\sigma}} c_{i j}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} \quad \text { s.t. } \quad E_{j}=X_{i j}+X_{i j}=w_{i} c_{i j}+w_{j} c_{i j}
$$

Corresponding Lagrangian is

$$
\max _{c_{i j}, c_{j j}} \quad \mathcal{L}\left(c_{i j}, c_{j j}, \lambda\right)=\frac{\sigma}{\sigma-1}\left(\alpha_{i}^{\frac{1-\sigma}{\sigma}} c_{i j}^{\frac{\sigma-1}{\sigma}}+\alpha_{j}^{\frac{1-\sigma}{\sigma}} c_{i j}^{\frac{\sigma-1}{\sigma}}\right)+\lambda\left(E_{j}-w_{i} c_{i j}-w_{j} c_{j j}\right) .
$$

Optimal expenditure

First order conditions

$$
\begin{aligned}
& \frac{\partial \mathcal{L}\left(c_{i j}, c_{j j}, \lambda\right)}{\partial c_{i j}}=\alpha_{i}^{\frac{1-\sigma}{\sigma}} c_{i j}^{-\frac{1}{\sigma}}-\lambda w_{i} \stackrel{!}{=} 0 \\
& \frac{\partial \mathcal{L}\left(c_{i j}, c_{j j}, \lambda\right)}{\partial c_{j j}}=\alpha_{j}^{\frac{1-\sigma}{\sigma}} c_{j j}^{-\frac{1}{\sigma}}-\lambda w_{j} \stackrel{!}{=} 0 \\
& \frac{\partial \mathcal{L}\left(c_{i j}, c_{j j}, \lambda\right)}{\partial \lambda}=E_{j}-w_{i} c_{i j}-w_{j} c_{j j} \stackrel{!}{=} 0
\end{aligned}
$$

Optimal expenditure

In optimum, marginal rate of substitution equal to price ratio:

$$
\begin{aligned}
\underbrace{\left(\frac{\alpha_{i}}{\alpha_{j}}\right)^{\frac{1-\sigma}{\sigma}}\left(\frac{c_{i j}}{c_{j j}}\right)^{-\frac{1}{\sigma}}}_{\text {MRS }} & =\frac{w_{i}}{w_{j}} \\
\Leftrightarrow c_{j j} & =\left(\frac{\alpha_{i}}{\alpha_{j}}\right)^{\sigma-1}\left(\frac{w_{i}}{w_{j}}\right)^{\sigma} c_{i j}
\end{aligned}
$$

Optimal expenditure

Substitute into budget constraint

$$
\begin{aligned}
E_{j} & =w_{i} c_{i j}+w_{j} c_{j j} \\
& =\alpha_{i}^{\sigma-1} w_{i}^{\sigma} c_{i j}\left(\left(\alpha_{i} w_{i}\right)^{1-\sigma}+\left(\alpha_{j} w_{j}\right)^{1-\sigma}\right)
\end{aligned}
$$

Expenditure shares

Expenditure share of country i's good in country j

$$
\begin{aligned}
\lambda_{i j} & =\frac{X_{i j}}{E_{j}}=\frac{w_{i} c_{i j}}{E_{j}} \\
& =\left(\frac{\alpha_{i} w_{i}}{P_{j}}\right)^{1-\sigma}
\end{aligned}
$$

with $P_{j} \equiv\left(\left(\alpha_{i} W_{i}\right)^{1-\sigma}+\left(\alpha_{j} W_{j}\right)^{1-\sigma}\right)^{1 /(1-\sigma)}$ as price index in j

Welfare formula for international trade

Expenditure share for country j

$$
\lambda_{j j}=\frac{X_{j j}}{E_{j}}=\left(\frac{\alpha_{j} w_{j}}{P_{j}}\right)^{1-\sigma}
$$

Define welfare as real income, i.e.

$$
\begin{aligned}
W_{j} \equiv \frac{Y_{j}}{P_{j}} & =\frac{W_{j} L_{j}}{P_{j}} \\
& =\lambda_{j j}^{\frac{1}{1-\sigma}} \frac{L_{j}}{\alpha_{j}}
\end{aligned}
$$

Welfare formula for international trade

For $\widehat{W}_{j} \equiv W_{j}^{\prime} / W_{j}$ and $\hat{\lambda}_{j j} \equiv \lambda_{j j}^{\prime} / \lambda_{j j}$ we get

$$
\widehat{W}_{j}=\frac{\lambda_{j j}^{\prime \frac{1}{1-\sigma}} \frac{L_{j}}{\alpha_{j}}}{\lambda_{j j}^{\frac{1}{1-\sigma}} \frac{L_{j}}{\alpha_{j}}}=\hat{\lambda}_{i j}^{\frac{1}{1-\sigma}}
$$

and importantly

$$
\widehat{W}_{j}^{\text {Autarky }}=\frac{\lambda_{j j}^{\frac{1}{1-\sigma}} \frac{L_{j}}{\alpha_{j}}}{1^{\frac{1}{1-\sigma} \frac{L_{j}}{\alpha_{j}}}}=\lambda_{j j}^{\frac{1}{1-\sigma}} .
$$

ABSOLUTEAND COMPARATIVE ADVANTAGE

Motives to trade

Cross-country differences: countries export the goods they can produce with an inherent advantage

Motives to trade

Cross-country differences: countries export the goods they can produce with an inherent advantage

- Ricardo: differences in productivity due to differences in technology

Motives to trade

Cross-country differences: countries export the goods they can produce with an inherent advantage

- Ricardo: differences in productivity due to differences in technology
- Heckscher-Ohlin: differences in factor endowments

Motives to trade

Cross-country differences: countries export the goods they can produce with an inherent advantage

- Ricardo: differences in productivity due to differences in technology
- Heckscher-Ohlin: differences in factor endowments
- Krugman: increasing returns to scale lead to specialization

Motives to trade

Cross-country differences: countries export the goods they can produce with an inherent advantage

- Ricardo: differences in productivity due to differences in technology
- Heckscher-Ohlin: differences in factor endowments
- Krugman: increasing returns to scale lead to specialization
\rightarrow Next weeks!

Absolute and comparative advantage

- 2 countries: Germany and Turkey

Absolute and comparative advantage

- 2 countries: Germany and Turkey
- 2 goods: cars and boats

Absolute and comparative advantage

- 2 countries: Germany and Turkey
- 2 goods: cars and boats
- 1 factor of production: labor

Absolute and comparative advantage

- 2 countries: Germany and Turkey
- 2 goods: cars and boats
- 1 factor of production: labor

Units of goods produced by one worker in a month:

	boats	Cars
Germany	300	90
Turkey	900	30

Absolute and comparative advantage

	Boats	Cars
Germany	300	$\mathbf{9 0}$
Turkey	$\mathbf{9 0 0}$	30

Absolute and comparative advantage

	Boats	Cars
Germany	300	$\mathbf{9 0}$
Turkey	$\mathbf{9 0 0}$	30

- Germany has absolute advantage in the production of cars

Absolute and comparative advantage

	Boats	Cars
Germany	300	$\mathbf{9 0}$
Turkey	$\mathbf{9 0 0}$	30

- Germany has absolute advantage in the production of cars
- Turkey has absolute advantage in the production of boats

Absolute advantage

Absolute advantage

A country has an absolute advantage in the production of a good, if its productivity for the production of this good is larger than the productivity of the other country.

Absolute advantage

Absolute advantage

A country has an absolute advantage in the production of a good, if its productivity for the production of this good is larger than the productivity of the other country.

Adam Smith, 1723-1790

Absolute and comparative advantage

But if the productivities are different...

	Boats	Cars
Germany	$\mathbf{6 0 0}$	$\mathbf{9 0}$
Turkey	300	30

Absolute and comparative advantage

But if the productivities are different...

	Boats	Cars
Germany	$\mathbf{6 0 0}$	$\mathbf{9 0}$
Turkey	300	30

- Now Germany has an absolute advantage in the production of both goods

Absolute and comparative advantage

But if the productivities are different...

	Boats	Cars
Germany	$\mathbf{6 0 0}$	$\mathbf{9 0}$
Turkey	300	30

- Now Germany has an absolute advantage in the production of both goods
- But it has a comparative advantage in the production of cars

Absolute and comparative advantage

But if the productivities are different...

	Boats	Cars
Germany	$\mathbf{6 0 0}$	$\mathbf{9 0}$
Turkey	300	30

- Now Germany has an absolute advantage in the production of both goods
- But it has a comparative advantage in the production of cars
\rightarrow German workers are two times more efficient in producing boats, but three times more efficient in producing cars

Absolute and comparative advantage

Comparative advantage

A country has a comparative advantage in the production of a good, if its relative productivity for the production of this good relative to other goods is higher than for the other country.

Absolute and comparative advantage

Comparative advantage

A country has a comparative advantage in the production of a good, if its relative productivity for the production of this good relative to other goods is higher than for the other country.

David Ricardo, 1771-1823

