INTERNATIONAL ECONOMICS

Lecture 4 — November 22, 2022

Julian Hinz Bielefeld University

Last week

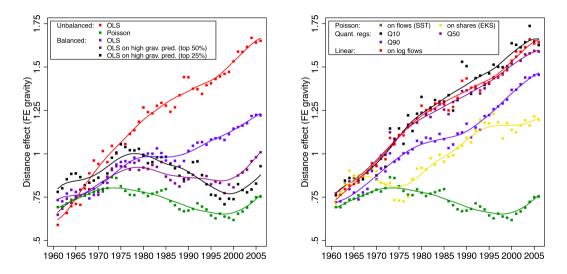
- Trade costs
- Head-Ries Index
- Estimating gravity

This week

- Tom Friedman: "The World is Flat" Leamer (2009): It's not.
 - \rightarrow Distance puzzle: Why is the distance elasticity of trade not decreasing?
 - ightarrow Border puzzle: Why do countries trade so much more with themselves?

THE WORLD IS (NOT) FLAT

"From the telegraph to the Internet, every new communication technology has promised to shrink the distance between people, to increase access to information and to bring us ever closer to the dream of a perfectly efficient, frictionless global market."


— Friedman (2005, p. 204)

Why isn't the world becoming "flatter"?

- 1. Containerization: Dramatic reduction of transport costs and transport time.
- 2. Cargo flights: Air transportation costs dropped by 90% from 1955 to 2004
- 3. Telephone connections: Cost of international long-distance calls down 95% from 1988 to 2010
- 4. Internet: Today, information exchange between almost any point on earth close to free of charge

DISTANCE PUZZLE

Distance puzzle

Relative trade costs

- Gravity model captures only relative trade costs
 - $\rightarrow\,$ comparison of different trade flows.
- Idea of Yotov (2012): Comparison with *intra*national trade.
 - \rightarrow relative decrease of international distance elasticity

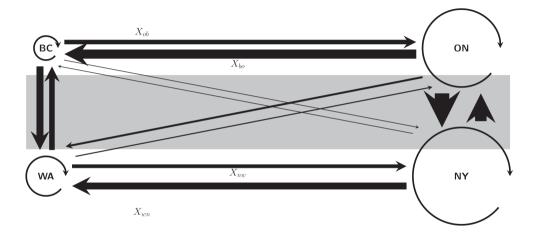
	(1) OLS	(2) PPML	(3) INTRA	(4) BRDR	(5) <i>FEs</i>
Log distance 1986	-1.168 (0.044)**	-0.859 (0.037)**	-0.980 (0.072)**	-0.857 (0.063)**	-0.910 (0.032)**
Log distance 1990	-1.155 (0.042)**	-0.834 (0.038)**	-0.940 (0.073)**	-0.819 (0.063)**	-0.879 (0.032)**
Log distance 1994	-1.211	-0.835	-0.915	-0.796	-0.860
Log distance 1998	(0.046)** -1.248	(0.035)** -0.847	(0.072)** -0.887	(0.063)** -0.770	(0.032)** -0.833
Log distance 2002	(0.043)** -1.241	(0.035)** -0.848	(0.071)** 0.884	(0.063)** -0.767	(0.032)** -0.829
Log distance 2006	(0.044)** -1.261	(0.032)** 0.836	(0.071)** -0.872	(0.063)** -0.754	(0.032)** -0.811
Contiguity	(0.044)** 0.223	(0.031)** 0.437	(0.071)** 0.371	(0.062)** 0.574	(0.032)** 0.442
Common language	(0.203) 0.661 (0.082)**	(0.083)** 0.248 (0.077)**	(0.140)** 0.337 (0.168)*	(0.155)** 0.352 (0.137)*	(0.082)** 0.241 (0.076)**
Colony	0.670 (0.149)**	-0.222 (0.116)+	0.019 (0.156)	0.027	-0.220 (0.117)+
Log intra-national distance	(0.143)	(0.110)	-0.488 (0.101)**	-0.602 (0.109)**	(0.117)
Intra-national trade dummy			(0.101)	1.689 (0.574)**	
Observations	25689	28152	28566	28566	28566
Percent change in log distance between 1986	7.950 (3.759)*	-2.750 (3.004)	-10.965 (1.058)**	-11.969 (1.173)**	-10.931 (0.769)**
and 2006 <i>Intra-national</i> trade	No	No	Yes	Yes	Yes
Country-specific intra-national fixed effects	No	No	No	No	Yes

BORDER PUZZLE

Trade effects of international borders

Simple example: USA and Canada

- Intra- and international trade between 2 American states and 2 Canadian provinces
 - ightarrow New York and Washington, Ontario and British Columbia



Trade effects of international borders

- Similar transport distances and comparable other trade costs

 \rightarrow Vancouver – Toronto 4372km, Vancouver – Buffalo 4392km, Seattle – Toronto 4156km, Seattle – Buffalo 4176km.

- ightarrow same language, similar culture, very integrated societies
- \rightarrow free trade agreement
- Idea: analyze 8 trade flows between East and West coasts

trade effects of international borders

- Bilateral trade volume proportional to the strength of the arrow
- Intranational trade much larger than international trade
- border between US and Canada reduces trade by 86.3 %

$$X_{ij} = S_i M_j \phi_{ij}$$
, with $\phi_{ij} = \beta_{ij} \cdot g(\text{distance}_{ij})$

where

- Trading cost $g(\text{distance}_{ij})$ as a function of $\text{distance}_{ij} > 0$
- Discontinuity in trade costs at the frontier: $\beta_{ij} \ge 1$

Annahmen:

- Symmetric transportation cost function: $g(\text{distance}_{ij}) = g(\text{distance}_{ij})$
- *Intra*national trade:

$$\beta_{\mathsf{BC}\to\mathsf{ON}}=\beta_{\mathsf{ON}\to\mathsf{BC}}=\beta_{\mathsf{WA}\to\mathsf{NY}}=\beta_{\mathsf{NY}\to\mathsf{WA}}=1$$

- International trade:

$$\beta_{\mathsf{ON}\to\mathsf{WA}}=\beta_{\mathsf{BC}\to\mathsf{NY}}=\beta_{\mathsf{CA}\to\mathsf{US}}\geq 1,\quad \beta_{\mathsf{WA}\to\mathsf{ON}}=\beta_{\mathsf{NY}\to\mathsf{BC}}=\beta_{\mathsf{US}\to\mathsf{CA}}\geq 1$$

$$\sqrt[4]{\frac{X_{BC \to ON} X_{ON \to BC} X_{WA \to NY} X_{NY \to WA}}{X_{BC \to NY} X_{NY \to BC} X_{WA \to ON} X_{ON \to WA}}}$$

$$= \sqrt[4]{\frac{\phi_{BC \to ON} \phi_{ON \to BC} \phi_{WA \to ON} \chi_{ON \to WA}}{\phi_{BC \to NY} \phi_{NY \to BC} \phi_{WA \to ON} \phi_{ON \to WA}}}$$

$$= \sqrt{\beta_{US \to CA} \beta_{CA \to US}} \underbrace{\sqrt{\frac{g(\text{Distanz}_{BC \to NY}) g(\text{Distanz}_{WA \to ON})}{g(\text{Distanz}_{BC \to ON}) g(\text{Distanz}_{WA \to NY})}}}_{\approx 1}$$

$$= 7, 3$$

- Intranational trade = $7.3 \times$ International trade
 - ightarrow U.S.-Canada border reduces trade by 86.3%
- Tariffs explain about 4 percentage points of the border effect
 - ightarrow the remaining 82% of the border effect cannot be trivially explained

Effect of an international boundary — Naive estimate

Naive gravity equation

$$\log X_{ij} = \alpha + \beta_1 Y_i + \beta_2 E_j + \gamma_1 C A_{ij} + \gamma_2 U S_{ij} + \delta \log \text{distance}_{ij} + \varepsilon_{ij},$$

with indicator variable (analogous for *US_{ij}*):

$$CA_{ij} = \begin{cases} 1 & \text{if } i \in CA \} & \land \quad j \in \{CA\}, \\ .0 & \text{other} \end{cases}$$

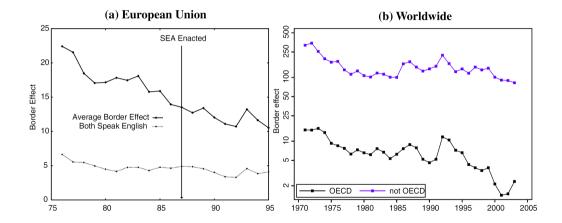
 \rightarrow multilateral resistance ignored

Effect of an international boundary — fixed effect estimate

Structural gravity equation

$$\log X_{ij} = \mathbf{D}_i + \mathbf{D}_j + \gamma B_{ij} + \delta \log \mathsf{distance}_{ij} + \varepsilon_{ij},$$

with fixed effects vectors \mathbf{D}_i and \mathbf{D}_j and

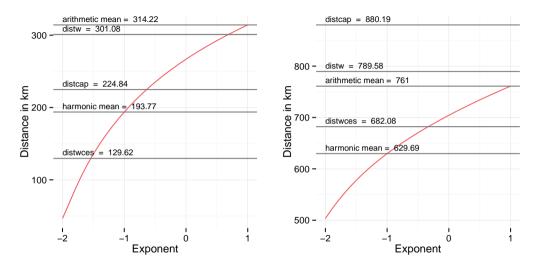

$$B_{ij} = \begin{cases} 1 & \text{if } i, j \in \mathsf{CA}, \mathsf{US} \} & \land \quad i = j, \\ 0 & \text{if } i, j \in \mathsf{CA}, \mathsf{US} \} & \land \quad i \neq j \end{cases}$$

 \rightarrow multilateral resistance captured!

Dependent Variable: value of Exports for Province/State Pair						
	McCallum (1995) and other samples			A. v. W. (2003)	Fixed Effects	
	(1)	(2)	(3)	(4)	(5)	
Regions included:	CA-CA CA-US	CA-CA CA-US	US-US CA-CA CA-US	US-US CA-CA CA-US	US-US CA-CA CA-US	
Year of data:	1988	1993	1993	1993	1993	
 Indicator Canada	3.09 (0.13)	2.80 (0.12)	2.75 (0.11)			
Indicator US	(0.0)	()	0.4			
Indicator Border			(0.00)	-1.65 (0.08)	-1.55 (0.06)	
Border effect Canada	22.0 (2.9)	16.4 (2.0)	15.7 (1.9)	10.5 (1.2)		
Border effect US		,	1.5 (0.1)	2.6 (0.1)		
Border effect Average			4.8 (0.3)	5.2 (0.4)	4.7 (0.3)	
<i>R</i> ² Observations	0.81 683	0.76 679	0.85 1511	n.a. 1511	0.66 1511	

Quelle: Feenstra, R. C. (2015). Advanced International Trade: Theory and Evidence. Princeton University Press.

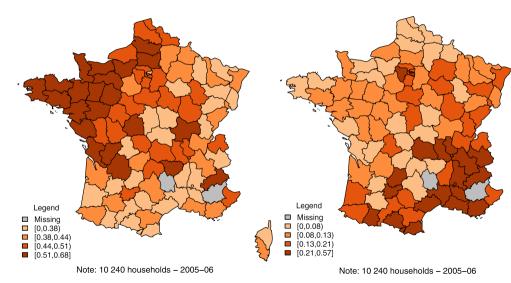
Persistence of the border effect

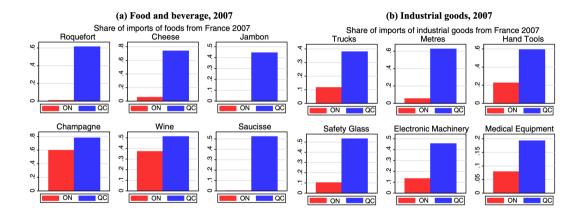


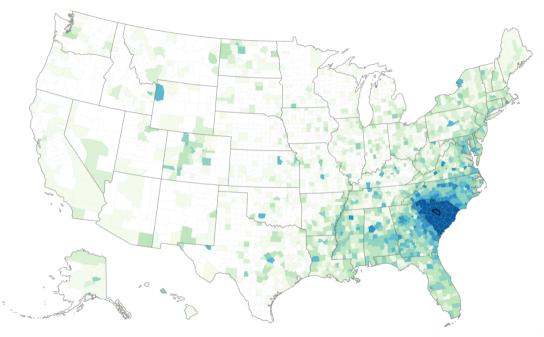
Border effect — State of research

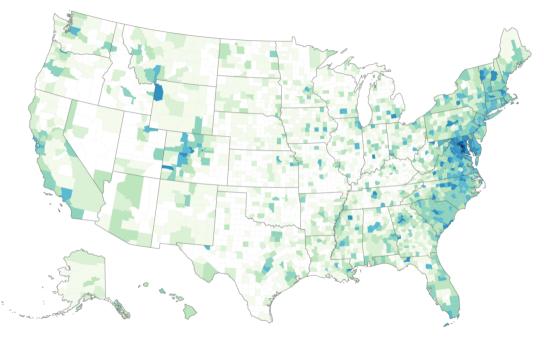
Study	Border	Trade reduction	Year
International borders:			
McCallum (1995, AER) Anderson & Van Wincoop (2003, AER) Chen (2004, JIE)	USA vs. Kanada USA vs. Kanada Intra-EU	95.4% - 95.8% 79.6% - 80.8% 73.3% - 96.0%	1993 1993 1996
Intranational borders:			
Wolf (2000, RES) Hillberry & Hummels (2003, RES) Combes, Lafourcade & Mayer (2005, JIE) Millimet & Osang (2007, CJE) Yilmazkuday (2012, JIE)	USA USA Frankreich USA USA	68.0% - 77.1% 35.6% - 62.8% 62.4% - 85.5% 83.1% - 88.1% -4.2% - 86.7%	1993 1997 1993 1997 2007
Historical borders:			
Nitsch & Wolf (2013, CJE) Felbermayr & Gröschl (2014, El)	Ost- vs. West-Deutschland Union vs. Konföderation	20.5% - 27.8% 7.6% - 14.1%	2004 1993

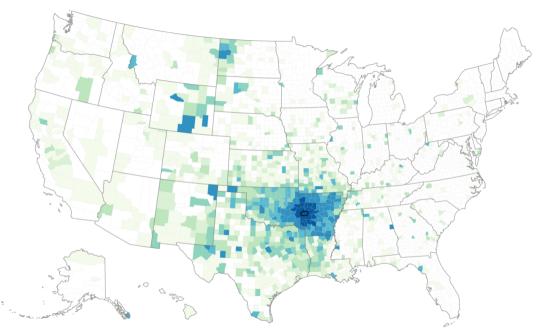
Causes


- Measurement error and misspecification of trade values and control variables
- Information asymmetries
- Local preferences
- Network structures




Internal distance of Germany (left) and distance between Germany and France (right). Source: Hinz (2017).




(b) Olive oil

Conclusion

- Inter- and intra-national borders continue to have trade-reducing effect
- Absolute distance elasticity if at all hardly decreased, only relative to internal trade
- Possible explanations: Information asymmetries, local preferences and network structures

INTERNATIONAL ECONOMICS

Lecture 4 — November 22, 2022

Julian Hinz Bielefeld University

